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Abstract--Stability and well-posedness analyses are shown to yield complimentary predictive tools for the 
stability of stratified gas-liquid flow and the departure to other bounding flow patterns over a wide range 
of (upward and downward) inclination. The conditions for marginal stability and weU-posedness are 
further shown to coincide with the conditions for stable kinematic and dynamic waves derived from wave 
theory. A complete stratified/non-stratified transitional boundary is proposed, which shows satisfactory 
agreement with experimental observations in horizontal and inclined conduits. The observed sensitivity 
of the departure from the stratified configuration to the flow inclination is well-elucidated, in view of 
the dramatic effects of inclination on the structure of the stability and well-posedness map. The effects 
of physical properties, liquid viscosity, phases densities and density differential on the stability and 
well-posedness map in inclined systems are also explored. 
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1. INTRODUCTION 

In exploring the departure from the stratified configuration, the evolution of amplified interfacial 
disturbances is considered as a precursor to transition. Hence, traditionally the approach of a 
stability analysis has been employed, either by applying the classical inviscid Kelvin-Helmholtz 
(K-H) theory (Kordyban & Ranov 1970; Kordyban 1977; Wallis & Dobson 1973) or through a 
"viscid" analysis, whereby the various shear stresses are accounted for (Lin & Hanratty 1986; 
Andritsos & Hanratty 1987; Andritsos et al. 1989). 

Another approach for analyzing the stability of the flow is based on wave-theory. In deriving 
the characteristics of kinematic and dynamic waves in two-component flow, WaUis (1969) has 
shown that the relations between the velocities of these two classes of waves govern the stability 
of the two stratified layers. It has been shown that the condition of equal kinematic and dynamic 
waves velocities corresponds to marginal stability. Following this approach, Wu et al. (1987) 
determined the stratified/non-stratified transition in horizontal gas-liquid flows. 

As shown herein, the above stability analysis is insufficient to yield the complete transitional 
boundary to the various boundary patterns. Recently, the authors, in attempting to study the 
stability and transitions in horizontal liquid-liquid two-phase flows (Brauner & Moalem Maron 
1992a, b), invoked parallel analyses on the stability as well as on the well-posedness of the 
(hyperbolic) equations which govern the stratified flow. It has been shown that the departure from 
the stratified configuration is associated with a "buffer zone", confined between the conditions 
derived from stability analysis (a lower bound) and those obtained by requiring well-posedness of 
the transient governing equations (an upper bound). These two bounds form the basis for the 
construction of the complete stratified/non-stratified transitional boundary for the various 
bounding flow patterns. The integrated frame of stability and well-posedness analyses has been 
found suitable also for horizontal gas-liquid systems (Brauner & Moalern Maron 1991). However, 
as yet, no systematic stability analysis of stratified inclined flow has been reported, a particular 
focus is required on the effect of inclination. 

The purpose of the present study is thus three-fold. First, to frame the general relations between 
stability and well-posedness on the one hand, and the characteristics of kinematic and dynamic 
waves on the other. This may bridge between the various approaches which stem from stability 
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analyses and others based on wave-theory. Secondly, to clarify some of the basic aspects regarding 
the stability characteristics of inclined gas-liquid flows and to explore the relative destabilizing 
contributions of the two phases. Finally, the various presented analyses are integrated to construct 
a complete stratified/non-stratified transitional boundary in downward and upward inclined 
gas-liquid systems. 

2. THEORETICAL ANALYSIS AND CONCEPTS 

Referring to an inclined stratified gas-liquid flow and utilizing the average one-dimensional, 
two-fluid transient formulation, the two continuity equations and combined momentum equation 
read: 

; (PLAL) +g (PLALUL) = 09 

f (PGAG) + g (PGAGUG) = 0 PI 

and 

with 

AfoL= -rL?friS, 
L 

+ro?+(p,-po)gsin/?, 
G 

where: uo, uL denote instantaneous local values for the gas and liquid phases velocities, h stands 
for the liquid phase depth; Yo, yL are the shape factors which account for a velocity distribution 
in the two phases; and A, S are the flow cross-section areas and perimeter lengths (functions of 
h). The shear stresses, ro, zL and Zi are expressed in terms of the corresponding friction factors 
fG, fL and fi. In the framework of quasi-steady modelling of the shear stresses these are to be 
modelled in terms of the flow variables uo, uL, h according to the particular physical situations 
under consideration. The positive sign in [4] corresponds to a faster gas phase, whereas a negative 
sign corresponds to a faster liquid phase. In the case of horizontal gas-liquid stratified flows, the 
gas velocity is practically always much higher than the liquid velocity, whereby the interface is 
considered as free surface with respect to the liquid phase and as stationary surface with respect 
to the fast gas phase. In the case of inclined flows, however, it is shown herein that the phases 
velocities may be comparable and, depending on the particular operational conditions, the velocity 
of one of the phases may exceed the other. Consequently, “adjustable definitions” for the hydraulic 
diameters of the two phases ought to be used in the shear stresses modelling as part of the solution 
procedure. Moreover, for a given downward inclination, the modelling of the fully-developed 
gas-liquid stratified flow becomes dependent on three parameters (the input flow rates ratio in 
addition to the Martinelli parameter and inclination). These aspects and others have been detailed 
recently by the authors with reference to stratified liquid-liquid layers of comparable velocities 
(Brauner 8z Moalem Maron 1989, 1992a). 

Due to the conceptual link (as shown below) between stability and well-posedness on the one 
hand and the kinematic and dynamic wave characteristics on the other, the governing transient 
equations [l-3] are explored along two main routes: stability analysis and the conditions for 
possessing real characteristics and their relations to the propagation of kinematic and dynamic 
waves. 
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2.1. Stability analysis in relation to kinematic and dynamic waves 
The conditions for stability are derived by perturbing the linearized transient model equations 

around a presumed smooth fully-developed stratified flow pattern. This yields a dispersion equation 
which relates the real wave number, k to the complex wave velocity, C = co/k. Based on the 
dispersion equation, the so-called neutral stability conditions are obtained by requiring a zero 
imaginary part for C, whereby the neutral stable wave number, kn, and the corresponding wave 
velocity, C~ are (Brauner & Moalem Maron 1992a): 

JC+JL = 1 + L ,  [5] 

with 

J , =  
(10L -- PG)g COS fl '  

U2s PG I~" r:Crn, )2 ( C r n )  ] 
A=Dgcos (p _po)0_,) L\ o 1 + ( t o - l ) ,  

JL=Dgcos---~fl(pL__pG)E3[~U L - 1  + 1 - - 2 ~ L  L (YL--1) , [6a] 

and 
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Where 63AFGL/63(H , [fro, UL) are 63AfGL/63(h , UG, UL) at steady conditions H, Uc, UL with Ucs, UL~ 
as the superficial phases velocities ( = 4Q/nD2), and ~ denotes normalized values (areas by D 2 and 
lengths by D). Note that the l.h.s, of [5] includes the destabilizing contributions of the two phases 
inertia (relative to gravity) JL, JG. These vanish for particular combinations of wave celerity and 
shape factor related by Cm/U = ~ + (~2 _ ~)~/~. For instance, for plug flow and a stationary liquid 
phase (~L = 1, C~ = UL ; as conventionally used in previous stability analyses) or for a linear velocity 
profile in the liquids, ~L = 4/3 and Cm = 2UL. 

Inspection of [5] and [6] indicates that the structure of [5] is invariant with the specific quasi- 
steady modelling of the wall and interfacial shear stresses, and evolves essentially from the 
continuity equations and the l.h.s, of the momentum equations. On the other hand, [6] for C~n is 
directly related to the modelling of the various shear stress terms at steady state (the r.h.s, of the 
two-fluid momentum equation [4]). In this sense, the form of [5] is general and is affected by the 
modelling of shear stresses only indirectly through the C~ value. Thus, given different correlations 
for the shear stresses (e.g. Andreussi & Persen 1987), the general form of [6] provides the 
corresponding values for C~. 

It is of particular interest to show at this point, that the expression for the wave velocity at neural 
stability, [6] for C~, is in fact identical to the definition of kinematic wave velocity, Ck. Starting 
with the definition of kinematic wave velocity (Wallis 1969) 

where 

(aUL,~ 
q = \--&-E :uo, Fo  [7a] 

Urn= UL,+ U~, = EUL + (l -- E)U~, [7hi 
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the conditions of  quasi-equilibrium of forces, AFGL = const = 0, and constant total flux, Urn, are 
to be maintained in [7a]: 

and 

CO AFGL d U CO AFGL d U CO AFGL 
d(AFGL) - ~ G + CO U----~ L + ~ de = 0 [8a] 

dUL, = - dUGs. [8b] 

Combining [7b] and [8b] yields dUE and dUG (in terms of  dUEs and dE), which when substituted 
into [8a] result in an expression for the derivative of the liquid flux with respect to concentration, 
[7a], in terms of UL, UG, E, which is identical to [6b]. 

Thus, the neutral stable wave actually represents a continuity wave and its characteristic 
velocity can be determined either by stability analysis or via the derivative of  the liquid flux 
with respect to its in situ hold-up (concentration). Clearly, both the neutrally stable and continuity 
waves are based on the steady momentum equation. In view of this relationship between 
neutral stable and kinematic waves, and for the sake of  further interpretations, the general 
dispersion equation [derived in Brauner & Moalem Maron (1992a)] is rearranged now in terms 
of  Ck ( - C~): 

where 

[ i I i C 2-  2Vo--~V l C+V~--~CkVI=O, [9] 
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Here, V0 represents a weighted mean velocity of the two phases and V~ is a damping parameter 
due to the shear stresses. [Based on the shear stresses modelling, as detailed by Brauner & Moalem 
Maron (1992a), it can be shown that Vt attains always a positive value, independent of the relative 
velocity between the two phases.] 

The relation of  the general dispersion equations [9] to dynamic waves is derived here by recalling 
that a pure dynamic wave occurs whenever the net force on the flowing fluids is produced only by 
a concentration gradient (and is independent of the in situ concentration). In this case, the r.h.s. 
of  the combined momentum equation [4], which is a function of  the in situ concentration, is to be 
ignored, whereby AfGL is considered as identically zero. Thus, the general dispersion equation [9], 
with I,'1 = 0, becomes 

where 

c~-2VoC~+ v~, = o, 

Ca= Vo+ ~ V ~ .  [I11 
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Substituting V~ from [10c] into [11] yields the dynamic wave velocity: 

- 

[-PL ooTr vt Uh.l'ApgcosB+#k21"]'~'/2(PL Po) [12] 
+ LZ+zJL'L"L -'o"o + i A; / i j  L Z + Z  " 

Here, ¢d is the dynamic wave velocity relative to the weighted mean velocity. Equation [12] (or 
simply [l l]) implies that a stable dynamic wave is obtained provided (V~ > V~): 

D 
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POE 

PL = 1 + p---EL 2---9-G "dL .'~L. PGPL . [13b-d] 
PG.4L' Pc=I+~G, POL=AGALPo PL 

/70 ÷ 2L 

where 

Note, however, that a pure dynamic wave may be physically realized in inviscid flows. In a 
viscid flow system, the wave characteristics may be related to those of  pure dynamic and 
kinematic waves by introducing V~ = W0 - c~ from [11] into the general wave dispersion equation, 
[9], to yield 

where 

i 
c 2 - c~ + -; V ~ ( c  - c~)  = 0 

c = c -  vo, c~=C~-  Vo. [141 

In view of [14], it is easily shown that at neutral stable conditions, the wave velocity is 
equal to both the kinematic and dynamic waves velocities, ¢ = Ck = Cd. Substituting c = cr + ici 

into [14], results in the wave frequency and wave amplification, in identical forms to those by 
WaUis 0969): 

and 

2 2 2 

[15a] 

coi-~ = y  ~- I . tl5b] 

Equations [15a, b] indicate that the locus for which the kinematic wave velocity is equal to that 
of the dynamic wave Ck = Cm -- Cd represents neutral stable wave modes. Indeed, equating Ca from 
[12] to Ck( ---- Cry), again renders the condition derived for neutral stability in [5]. Stable modes are 
obtained for C~k < e~ < C:d, whereas for unstable modes to exist it is required that c~ > c~ > c~ (since 
V~ > 0). Hence, it is the relation between kinematic and dynamic wave velocities which essentially 
determines the stability, since c~ > C2d corresponds to unstable modes, whereas modes with ed2 > ek2 
are attenuated. 

In extracting the conditions for the stable or unstable modes from [15a, b], it should be 
emphasized that cot and co i are expressed in terms of waves velocities relative to the weighted mean 
velocity and, therefore, ek, Cd and er may attain negative values. Thus, the condition for an unstable 
mode, e.g. e~ > c~, is equivalent to Ck > Ca when both Ck, Cd are positive, whereas for negative ek, 
Ca the conditions becomes Ck < Cd. In both cases, however, this means that in terms of absolute 
relative velocities, the kinematic wave exceeds the dynamic wave, ICk -- V0] > [Cd -- V0[, for an 
unstable mode. For a stable mode, the absolute relative velocity of the dynamic wave exceeds that 
of  the kinematic wave. 
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1 2 .  Well-posedness in relation to dynamic waves 

In two-phase flow problems, complex characteristics (ill-posed initial-value problem) may not 
necessarily imply an incorrect formulation, but may be attributed to physical instability of the 
assumed flow configuration. The test for reality of characteristics on the transient equations [1]-[3] 
is carried out around the initial condition of fully-developed stratified solution. The condition under 
which the characteristic roots are real is (Brauner & Moalem Maron 1992a) 

J0L U[~L()YL - -  1) +/~G U2yG(?G l 1 ) - -  (~ L UL [ ~ G  UG )2 + ~ [( P L i PG)g cos fl + t rk  2] I> 0. [16] 

The identity between [16] and [13a] for a stable dynamic wave, indicates that the region of 
well-posedness coincides with that of stable dynamic waves, c~ > 0. In the region where c~ < 0, all 
waves modes are unstable and their evolution, as formulated by the initial value set of [1]-[3] is 
ill-posed. As the stability condition for inviscid flows (AfGL- 0) is equivalent to that of pure 
dynamic waves, the well-posedness condition is actually equivalent to the classical (inviscid) K - H  
stability condition. 

2.3. Relations between stability, well-posedness and kinematic and dynamic wave characteristics 

For each combination of (U~,  ULs), the range for amplified wave numbers is obtained by solving 
[5] and [6] for kn, while [16] is also solved for k --- kr~, below which (k < k~) the characteristic roots 
are complex. For 0 < k < kn, the variation of the amplification with the wave number 
(kCi = klm{C} vs k) is obtained by the general dispersion equation and presented in figure 1 for 
slightly inclined flow. For a certain combination of (UGs, ULJ as in curves (c), and in .the range 
of  0 < k < kn, where the stabilizing effect of  surface tension is relatively small, the disturbances are 
amplified and hence a wavy interfacial structure develops. For these unstable wave modes, the 
square of the kinematic wave velocity exceeds that of  the corresponding pure dynamic wave, c~ > c 2 
(all velocities are relative to the weighted mean velocity). On the other hand, c 2 < c 2 for all the 
stable wave modes, k > kn. At each wave mode, the square of the wave propagation velocity, Cr 2, 
lies between the kinematic and dynamic bounds. 

It is also worth noting that for a specified (UGh, UL~) set, Ck is independent of the wave number, 
k, and is equal to the neutral stable wave velocity at k = kn (and k -- 0). The dynamic wave velocity, 
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on the other hand, varies with the wave number. Its square is negative for k < k~, identically zero 
at k = k~ and becomes positive for k > k~, as marked in figure 1. At the particular value of k = k,,  
all the characteristic waves velocities are equal, Ck-----Ca = Cm. 

In view of the typical curve (c) of figure 1, for all k < k~, an unstable smooth stratified flow is 
consistently predicted by both stability and reality of characteristics analyses with c 2 < 0. However, 
for any k~ < k < kn, while the governing equations [1]-[3] are well-posed as an initial-value 
problem, they are still expected to develop a wavy structure. It is to be emphasized that the value 
of k~ is always within the amplified range, k~: < k,. This has been rigorously shown with reference 
to general two-fluid liquid-liquid systems (Brauner & Moalem Maron 1992a). As a corollary, it 
can be stated that the condition of an unstable dynamic wave or ill-posedness is sufficient to indicate 
instability, whereas the condition of c~ > 0 or well-posedness is necessary, but insufficient, to ensure 
stability. 

Clearly, the range of amplified waves, k < k~, varies depending on the (UGs, ULs) combinations, 
as demonstrated in figure 1. For a particular combination of (UGh, ULs), as represented by curve 
(b), the amplified range almost diminishes (e;i, k~---~0), while for the conditions of curve (a), for 
instance, all wave modes are stable. 

As figure 1 relates to the effects of the flow rates of the phases, figure 2 includes typical 
trends for the effect of flow inclination at specified operational conditions, Uc~ = 1, UL~ = 0.2 m/s. 
For these conditions and in a horizontally levelled tube, fl = 0 °, a relatively limited range of 
weakly amplified (unstable) wave modes just appear. However, all of the growing wave modes 
are found to be well-posed (c~ > 0, : 2 cd < Cr < C~). AS the flow is slightly inclined downward, 
fl = 1 °, all the unstable wave modes disappear and the flow becomes smoothly stable for the 
entire range of wave numbers (c~ > 0, 2 2 Ck < Cr < C~). On the other hand, inclining the flow slightly 
upward, fl = - 0.5 °, results in a drastic increase in both the range of amplified wave numbers and 
the corresponding amplification. Moreover, a range of ill-posed wave modes also appears 
(0 < k < kr~, for which c~ < 0). Thus, in view of figure 2, the flow inclination has a dramatic effect 
on the stability of the flow, in the sense that a very slight downward or upward inclination can 
stabilize or destabilize the stratified flow configuration. However, the impact of a small upward 
inclination on the stability characteristics is significantly more pronounced. As shown below, this 
behaviour forms the basis for elucidating the stratified/non-stratified flow patterns transitions 
observed in upward and downward inclined flows. 

3. STABLE STRATIFIED FLOW BOUNDARIES IN INCLINED SYSTEMS 

Based on the stability and well-posedness analyses discussed in section 2, the limiting boundaries 
for stable stratified flows are defined herein. These boundaries are then utilized for constructing 
a complete stratified/non-stratified transitional line to the various bounding flow patterns (slug, 
psuedo-slugs and annular flows). 

3.1. Stability of the well-posedness map: "'zero neutral stability" and "zero real characteristics" lines 

As is shown in figures 1 and 2, for a given inclination, there exists a particular combination 
(UGs, ULs) for which the range of amplified waves diminishes, k,---~0. In searching for all 
combinations of (Uos, UL~) for which k,---~0, the so-called "zero neutral stability" line (ZNS) 
is obtained (by [5] and [6]). This boundary confines all possible smooth stratified flows. The 
locus of the curve itself represents the departure from the smooth stratified structure. For any 
operational set (Uc~, ULs) outside the k n = 0  boundary, the linear stability analysis predicts 
exponential growth with time for a finite range of wave numbers, 0 ~< k ~< k,. The growth of 
disturbances in this region may either be damped, (due to non-linear effects) and thus result in 
"stable wavy" stratified flow, or may result in a different flow configuration (due to bridging, for 
instance). 

In parallel to the ZNS boundary defined by kn = 0, a "zero real characteristics" boundary (ZRC) 
is constructed by searching for all combinations of (Uc~, UL~) which yield (by [16]) real 
characteristics for k~ = 0. The ZRC curve confines the region of operational conditions for which 
well-posedness is ensured for all wave modes. 
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Figure 3. SWP map for air-water horizontal and inclined systems. 

The ZNS and ZRC boundaries constitute what is called herein a "stability and well-posedness 
(SWP) map", as presented in figure 3(a-c) for horizontal and downward/upward inclined air-water 
flows. Generally, the ZRC boundary is composed of two branches, the left one corresponds to 
UL > Uo while along the right one UG > UL. The existence of two branches indicates the multiplicity 
of solutions, which becomes even more complicated along the ZNS boundary; it is also due to the 
discontinuities which evolve from laminar/turbulent flow regime transitions in either of the two 
phases. While point S~ in figure 3(a) represents the limiting conditions for a smooth stratified 
laminar water layer, at point $2 or $3, the flow restabilizes as the water layer becomes turbulent 
(at Re L = 1500). With a further increase in either the gas or liquid rates point $4 is reached, where 
the turbulent smooth liquid layer now attains a neutral stable situation. Thus, the region between 
points $2-$3-$4 corresponds to a stable turbulent liquid layer. As shown in figure 3(a-c), the 
multiplicity of solutions becomes more pronounced in inclined flows. The structure of the SWP 
map in figure 3(a) for a horizontal air-water system has been found to be typical of all horizontal 
flows of air-viscous liquids over wide ranges of liquid viscosity and tube diameter. [A wide range 
of Uc, is included in figure 3(a-c) to show some general features of SWP maps.] In figure 3(a) the 
instability characteristics are further discussed with reference to the characteristics of the kinematic 
and dynamic waves derived in section 2. In the smooth stratified region confined by the ZNS 

2 2 boundary, c,~ > C2k and C2k < Cr < Cd for all wave modes; while along the ZNS itself, c~ = c~, for the 



TRANSITIONAL BOUNDARIES IN INCLINED GAS-LIQUID FLOWS 549 

limit of long waves (k = kn---~0). Clearly, for all other modes, c,~ > c 2 certainly prevails along the 
ZNS. In the ill-posed region beyond the ZRC line, there exist a range of unstable dynamic waves, 
0 < k <k~,  for which c 2 < 0 and c2> c~. Along the ZRC boundary, c~(k~---~O)= 0, and the 
dynamic (long) waves are marginally stable, while all other dynamic waves modes are certainly 
stable. Between the limits of the ZNS and ZRC boundaries (shaded areas), c 2 > 0 for all wave 
modes, including those unstable modes for which c [ > c~ (and c~ < c~ < c~). 

The ideas and interpretations above, detailed with regard to the horizontal system of figure 3(a), 
prevail basically in inclined flow also, although the limiting ZNS and ZRC boundaries may 
demonstrate entirely different structures. The first point to note is the significant effect of inclination 
on the liquid layer velocity relative to the gas velocity. A downward inclination accelerates the 
liquid layer, whereby a region of UL > Uc (left of the UL = UG line) appears within the practical 
range of gas-liquid rates. On the other hand, with upward inclination the relative gas to liquid 
velocity becomes much higher and the equal velocities line moves left, to a region of extremely low 
gas rates. These pronounced changes in the phase velocities are accompanied by a corresponding 
drastic variation in the liquid layer thickness. For given gas and liquid rates, inclining the flow 
downwards, results in a thinner liquid layer, which is practically insensitive to the gas rate over 
a wide range. On the other hand, an upward inclination results in a drastic thickening of the liquid 
layer with high sensitivity to the gas rate. The dramatic changes in the flow geometry, phase 
velocities and their ratio affect, in view of [5], [6] and [16], the ZNS and ZRC locations. For 
instance, the small "side" buffer zone in figure 3(a), which corresponds to an unstable laminar 
liquid layer and is obtained only at high gas rates at fl = 0, penetrates towards much lower gas 
rates in downward inclination, figure 3(b). Note that, as the liquid rate is increased in this zone 
(at a specific gas rate), the flow stabilizes "discontinuously" due to laminar/turbulent flow regime 
transition in the liquid layer. In comparison, with inclining the flow upward, figure 3(c), a large 
unstable zone (shaded area) extends to relatively low liquid rates over a wide range of gas rates. 
At high gas rates, a limited bell-shaped stratified zone still prevails at this particular slight upward 
inclination. At higher inclinations, the resulting variations in the steady stratified solution 
(UL, Uo, H) are even higher, affecting stronger effects on the stability and well-posedness map. 

3.2. Construction of the stratified/non-stratified transitional boundary 

The general implication of the ZNS and ZRC lines, is in defining three zones; the area within 
the ZNS boundary, is well-understood to be the stable smooth stratified zone. Beyond the ZRC 
boundary, the complex characteristics imply that the governing equations of the stratified flow 
configuration cannot accommodate for the time and space variations associated with a certain 
range of amplified wave modes. Thus, while the ZNS boundary may represent a preliminary 
transition to a wavy interfacial structure, the ZRC boundary, which is within the wavy unstable 
region, represents an upper bound for the existence of a wavy stratified configuration, beyond 
which another flow pattern prevails. It is worth noting, that the stable smooth stratified zone, as 
defined by the ZNS line, is always a subzone confined within the well-posed region. 

The "buffer" region between the ZNS and ZRC lines is characterized by the evolution of 
amplified interfacial waves, the growth of which, as governed by the variation of (h, uc, UL) in space 
and time, is still well-posed. Whether these disturbances trigger a departure from the stratified 
configuration (due to blockage) depends on the relative layer thicknesses. For i f / t  = HID " 0.5 
to 1, it is likely that the evolution of the interfacial disturbances on the liquid layer will result in 
the tube blockage. Thus, when the entry from the Smooth into the "buffer" zone (along the ZNS 
boundary) is associated with a relatively thick liquid layer [above the ~ = 0.5 line, as at point $6 
in figure 3(a)], the ZNS line which, in general, represents the transition to a disturbed wavy pattern, 
will also predict the conditions for the development of other flow patterns. On the other hand, when 
the entry to the "buffer" zone (along the ZNS boundary) occurs with a relatively thin liquid layer 
(below the R - 0.5 line, as points S~-$4), the ZNS line is associated with the development of wavy 
stratified flow, but it plays no role in predicting the transition to other patterns. In this case, the 
transition to other flow configurations may be "delayed" and predicted by the ZRC boundary, as 
long as the relative liquid layer thickness, H/D, remains small in the "buffer" zone. As the relative 
liquid layer becomes of the order of the conduit radius, HID ,~ 0.5, within the "buffer" region, the 
disturbed interface may trigger flow pattern transition, this time within the "buffer" zone in the 
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vicinity of the HID ,~ 0.5 line. It is to be emphasized at this point, that although the structure 
of the SWP map varies dramatically with inclination (and physical properties), the principles 
of constructing the complete stratified/non-stratified transitional boundary are essentially 
applied along the same guidelines: along the ZNS boundary for H > F/c,t( = 0.5), following 

= Hcnt within the "buffer zone" and joining the ZRC track in the region of H < Hc,t. Clearly, 
H¢,t = 0.5 avoids a complicated non-linear stability analysis which is required to determine 
whether the growing waves in the "buffer" wavy region will indeed reach the upper tube wall and 
thus end in a different flow pattern. Note further, that the H/D ~, 0.5 section is not to be 
confused with the annular/slug transition (which is clearly beyond the stratified zone) and is 
determined by the limiting conditions of the annular configuration (Brauner & Moalem Maron 
1992b). 

Based on these guidelines, the resulting stratified/non-stratified transitional boundaries corre- 
sponding to figure 3(a-c) are constructed (for practical range of gas rates) in figure 4(a-c). For 
clarity, the predicted stable stratified smooth (S) and stratified wavy (SW) Zones are shaded 
differently and the transitional boundaries sections are in bold. 

3.3. Stratified/stratified-dispersed transition: SD boundary 

At sufficiently low gas/liquid input ratio, gas bubbles which accumulate at the upper tube 
cross-section, may still maintain their identity and thus the system may demonstrate a 
stratified-dispersed flow pattern. The gas phase may remain dispersed as a swarm of bubbles, 
provided the bubbles are small enough for the surface tension forces to overcome those due to 
buoyancy. A transitional criterion for stratified-dispersed flow has been proposed recently (Brauner 
& Moalem Maron 1992b) and is denoted in figure 4(a-c) as the SD boundary. 

The SD line is of relevance for complete construction of the stratified/non-stratified boundary 
only when it crosses the zone of stable stratification. In view of figure 4(a,b), the 
stratified-dispersed pattern in gas-liquid systems appears as a very small subzone of the stratified 
configuration and for sufficiently large tubes it is usually below the practical range of gas/liquid 
input ratios. For smaller tube diameters, larger stratified-dispersed zones are predicted. For upward 
inclination, figure 4(c), the SD boundary is outside the stable stratified region, implying that a 
stratified~lispersed pattern is not expected to develop. It is of interest to note that in liquid-liquid 
systems, extended stratified-dispersed zones may appear, at either the top or bottom of the conduit 
cross-section, due to the reduced density differential in liquid-liquid systems (Brauner & Moalem 
Maron 1992b; Brauner 1990). In gas-liquid systems, however, the stratified-dispersed pattern when 
observed (in small tubes) has usually been identified as part of the bubble flow zone (Brauner & 
Moalem Maron 1992c). 
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Figure 4. Construction of the stratified/non-stratified transitional boundary. 



TRANSITIONAL BOUNDARIES IN INCLINED GAS-LIQUID FLOWS 551 

4. DISCUSSION 

The guidelines formulated in section 3 for constructing the complete stratified/non-stratified 
transitional boundary are now to be tested in view of the available experimental data for inclined 
air-water systems. The effects of the physical properties of the fluids and their relative destabilizing 
contributions in inclined flows are also evaluated and discussed. 

4.1. Comparison with experiments 

Figures 5(a-d) and 6(a-f) present typical comparisons of the proposed stratified/non-stratified 
transitional boundary with available experimental data for air-water flows in 2.54 and 5.1 crn dia 
over a wide range of downward/upward inclinations (Mandhane et al. 1974; Shoham 1982). 

Inspection of figures 5(a-d) and 6(a-f) shows that in the region of relatively thin liquid layers, 
/~ < 0.5, the experimental transition data consistently follows the trend of the ZRC boundary. It 
is to be emphasized that for horizontal flow [figure 6(a)] the ZNS and ZRC boundaries are rather 
close to each other in this region and the data may seem to follow either of these. In inclined flow 
these two boundaries diverge significantly. However, the transitional data stick to the ZRC line, 
although this boundary now lies deep in the unstable smooth (or stratified wavy) region. This 
reinforces the dominant role of the well-posedness boundary in predicting the flow pattern 
transition in the region of relatively thin liquid layers as elucidated in section 3.2. 

The characteristic shape of the ZRC line is preserved over a wide range of downward 
inclinations. In upward inclinations the ill-posed zone has already started penetrating towards 
lower liquid rates at fl = - 0 . 5  °. At fl = - 1 ° (and steeper upward inclinations), the well-posed 
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region is seen to split into two separate regions. The first is entirely unstable and corresponds to 
low gas rates with H ,> 0.5, while the second at high gas rates (confines a stable subzone) is 
bell-shaped along which/-7 < 0.5, and is thus the relevant one to transition prediction. These two 
well-posed zones are apparently separated as they merge at lower liquid rates [out of  the practical 
range of figure 6(e, f)]. The ZNS line, as marked in figure 5(c, d), also form smaller bell-shaped 
zones of stable smooth stratified flow. 

According to the proposed transitional boundary, the role of the ZRC line in predicting 
transition ends at the intersection with the/-7 = 0.5 line. From this point, the departure from a 
stable stratified configuration is expected, first along the/-7 = 0.5 line in the wavy "buffer" zone 
and then along that section of  the ZNS line for which/7  > 0.5. This is clearly the case in figures 
5(a, b) and 6(a, b). In this case the complete stratified/non-stratified boundary is indeed composed 
of the three sections. However, when almost all the stable region confined by the ZNS line 
corresponds to /-7 < 0.5, as in figures 5(c, d) and 6(c, d), the ZNS line becomes irrelevant in 
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predicting a departure from a stratified configuration. Clearly, in this case, the transitional 
boundary follows first the ZRC line for H < 0.5 and then the H = 0.5 line throughout the "buffer" 
zone. Another possible situation is that in figure 6(e, f), where the critical layer thickness line, 

= 0.5, falls in the ill-posed region, in which case the flow pattern transition is entirely predicted 
by the ZRC location. Note also that the SD boundary, which is included in figures 5(a--d) and 
6(a-f), may sometimes reduce the predicted stable stratified zone to some extent [as in figure 5(b)]. 

It is of further interest to refer to the data which relates to the so-called pseudo-slug pattern 
[denoted sometimes as large-wave stratified flow or wavy annular flow; A in figures 5(a~l) and 
6(a-f)]. The pseudo-slug region is characterized by high-amplitude roll waves which extensively wet 
the upper tube walls, without causing the pressure fluctuations typical to a slug pattern. Inspection 
of the data reveals that the regions of pseudo-slugs develop within the herein predicted "buffer" 
region around H = 0.5. Indeed thick wavy layers bear the conditions for large-amplitude waves 
and extensive wetting of the upper wall, hence psuedo-slugs. Clearly, large-amplitude waves are 
more likely to cause pseudo-slugs in small diameters than in large diameters. 

In upward inclinations, the ZRC boundary predicts too fast a shrinkage of the stratified zone 
with increasing inclination using f = fc .  However, its comparison with the data significantly 
improves when amplification of the interfacial shear factor is considered [fi = BFc, B > 1, figure 
6(e, f)]. Indeed, augmentation of the interfacial shear factor is expected due to the relatively thick 
wavy liquid layer associated with upward inclination (particularly along the left part of the ZRC 
"bell" closer to H = 0.5). 

In view of figures 5(a~l) and 6(a-f), it is shown that, in spite of the variety of situations which 
appear at the different inclinations, the general guidelines for constructing the stratified/non- 
stratified transitional boundary are essentially maintained. 

4.2. Effect of liquid phase viscosity 
No experimental data is available for gas-viscous liquid flows in inclined tubes. However, as the 

present analytic approach has been shown to be a reasonable predictive tool, it would be valuable 
to present the combined effects of liquid viscosity and inclination as predicted by the present 
analyses. 

Figure 7(a-f) demonstrates the SWP maps for varying liquid viscosity and inclination. 
Comparing figure 7(a-f) with figure 3(a--c) for the same inclination indicates reduced regions of 
both stable smooth stratification and well-posedness with increasing the liquid viscosity. The 
reduced "buffer" zone and the thickening of the liquid layer in viscous liquids render an extended 
range of operational conditions where the ZNS boundary (for/4 > 0.5) controls the departure from 
stratified configurations. Thus, while with increasing inclination the role of the ZNS boundary 
diminishes [figures 5(a~:l) and 6(a-f)], it may become of importance in determining transitions in 
high viscous liquids. Hence, it may be stated that increased liquid viscosity moderates the effects 
of flow inclination on the SWP map. Also, expansion of the stratified-dispersed subzone with 
increasing liquid viscosity on account of the stratified zone is to be considered. For instance, for 
fl = - 0.5 ° at 1000 cP, figure 7(f) indicates that practically only the stratified~lispersed pattern is 
to be expected. 

4.3. Effect of density 
For completeness, the effect of the phases densities and the associated density differential on the 

SWP map are demonstrated in figure 8(a--d). Comparing figure 8(a) with figure 3(a) indicates that, 
for horizontal flow, the reduction in the density differential (from ~ 1 to ,~ 0.8) by decreasing the 
liquid density results in only minor changes. However, figure 8(b) shows that when the same density 
differential reduction is due to an increase in the gas density, the stability characteristics are 
influenced significantly. The main effects of increasing PG are the increase in the liquid rates and 
the decrease in the gas rates for which stable stratification can be maintained. This implies that 
in high-pressure systems, for instance, while the stratified/slug transition is delayed to higher liquid 
rates, the stratified/annular transition is expected at lower gas rates. 

It should be noted also that utilizing the modified coordinates (pG/Ap)I/2UG~ and (pL/Ap)l/2ULs 
instead of U~ and ULs significantly reduces the effect of the gas density on the location of the 
stratified/annular transtion. Therefore, such a presentation may be an advantage in scaling 
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Figure 7. Effect of liquid viscosity on the transitional boundaries in inclined systems. 

the stratified/annular transition to high-pressure systems. However, no universal structure for the 
complete SWP maps and the stratified/non-stratified transition boundary can be obtained. 

4.4. Identification of liquid-controlled or gas-controlled stability 

In [5] the gas and liquid destabilizing terms, JG and JL respectively, represent the combined effects 
of inertia (as evolve from the 1.h.s. of [1]-[3]) and viscosity (via Cm, as evolves from the r.h.s, of 
[3]). Obviously, in the range of relatively low gas rates, which usually corresponds to the 
stratified/slug transition, the liquid destabilizing term is expected to be the dominating one, JL > JG. 
This corresponds to "liquid-controlled" transition. For sufficiently high gas rates, along the 
stratified/annular transition, the contribution of the gas phase term may overtake that of the liquid 
layer, JG > JL and thus "gas-controlled" transition may be considered. This is demonstrated in 
figure 9(a, b) for various physical systems and inclinations. Note that figure 9(a) is calculated along 
those sections of the ZNS curves, which have been found relevant for transition prediction in figures 
5(a-d) and 6(a-f) (along the other ZNS boundaries within the shaded stable stratified region, JL 
is even higher). It is clear from figure 9(a) that for an air-water system the liquid phase dominancy, 
JL, is consistently preserved for horizontal as well as for downward inclined flows, except at very 
high gas rates in the horizontal case. In inclined flows, the ZNS boundary does not extend to high 
gas rates, while it becomes irrelevant for transition prediction for steep inclinations. Thus, for an 
inclined air-water system, the transition (when determined by linear stability) is practically 
"liquid-controlled". As the liquid viscosity is increased [figure 9(b)], the range of "gas controlled" 
stability and transition becomes more significant. 
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It is of importance to emphasize that previous studies related to the stratified/slug flow pattern 
transition assumed, in fact, a "gas-controlled" transition by unjustifiably ignoring the liquid 
destabilizing contribution totally. As their modelling is essentially based on the gas contribution, 
which plays a minor role along the stratified/slug boundary, a reasonable comparison with 
experiments required the insertion of empirical correction coefficients. For instance, Wallis & 
Dobson (1973), Taitel & Dukler (1976), Kordyban (1977) and Mishima & Ishii (1980) enhanced 
the gas term by dividing it by Kl = 0.5 and 1 - H, 0.49 and 0.74 respectively. In view of the present 
analyses, the relative contribution of the gas or liquid destabilizing terms depends on a variety of 
parameters and operational conditions. Stability analyses which ignore the mobility of the liquid 
phase and account for the gas destabilizing effects are basically erroneous. In the extremes, 
however, of definite "liquid-controlled" or "gas-controlled" transitional zones, empirical constants 
can be utilized to simplify the general predictive transitional criteria, provided that they are 
employed on the really dominating contribution. 

5. SUMMARY 

The instability characteristics of stratified gas-liquid inclined flows are derived along two main 
routes: stability and well-posedness analyses, and their relations to the stability of kinematic and 
dynamic waves. In general, the conditions of unstable dynamic waves or ill-posedness are sufficient 
to indicate instability, while the conditions for the stable dynamic waves or well-posedness are 
necessary, but insufficient, to assume stability. It is shown that flow pattern transitions are to be 
established in view of integrated considerations of stability and well-posedness (SWP map). 

The physical interpretation of the well-posedness criterion as an upper bound to the stratified 
flow configuration has been established. Its identity to the classical (inviscid) K-H condition 
explains the apparant relevance of the frequently applied inviscid analyses for predicting flow 
pattern transitions in two-phase viscid flows. 
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Figure 9. Relative liquid destabilizing contribution----effect of flow inclination and liquid viscosity. 

Downward inclination affects, in general, extensions of the well-posed region, while it reduces 
the stable smooth stratified zones (as defined by the ZNS boundaries). This results in increased 
"buffer" zones and implies that the stratified wavy pattern become dominant. In this case, whether 
the waves will trigger flow pattern transition depends on the relative liquid layer thickness in the 
"buffer" region. In upward inclination also the well-posed region is reduced significantly, whereby 
only limited (bell-shaped) areas of possible stable stratification are obtained. 

In exploring the relative destabilizing contribution of the gas and liquid phases along the ZNS 
line, it has been found that the departure from a stratified smooth to a slug flow pattern is 
practically "liquid-controlled" in horizontal and downward inclined air-water systems. 
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